Currency Wars or Efficient Spillovers? A General Theory of International Policy Cooperation

Anton Korinek

Johns Hopkins University and NBER

SUERF/PSE/CEPII Conference on "Rethinking Capital Controls and Capital Flows"

September 2016

Anton Korinek (JHU and NBER)

Currency Wars or Efficient Spillovers?

SUERF/PSE/CEPII 2016 1 / 40

- In a globalized world, national economic policies frequently create international spillover effects
- Examples: quantitative easing, devaluation policies, exchange rate & capital flow management, fiscal policy, etc.
- $\rightarrow \,$ concerns about "global currency wars"
- \rightarrow repeated demands for greater global cooperation
- BUT: premise for successful cooperation = Pareto inefficiency

Main Questions

- When are spillovers from national economic policies inefficient?
- If they are, how can cooperation improve welfare?

- multi-country model of international linkages
- optimizing private agents and national policymaker
- compare national and global optimum

 \rightarrow our framework nests a wide range of open economy macro models

Main Contribution 1: Inefficient Spillovers arise from three categories of problems:

- monopoly power
- imperfect external policy instruments
- international market imperfections
- $\rightarrow\,$ focus policy cooperation on areas where it can bear fruit

Main Contribution 2: If these problems are absent/addressed, the global allocation is Pareto efficient

 \rightarrow no further scope for global cooperation

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Main Contribution 3: Provide guidelines for cooperation

Address Three Areas of Inefficiency:

- ensure competitive behavior
- eal with incomplete/imperfect policy instruments
 - create new/better instruments
 - · use existing instruments more efficiently
- address imperfections in international markets
 - correct market imperfections
 - use existing markets more efficiently

All successful policy cooperation can be mapped into these areas

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Literature on policy cooperation:

- Monopolistic behavior: Adam Smith (1776), ..., Bagwell and Staiger (1999, 2001, etc.), ..., Costinot et al. (2013), ...
- Imperfect external instruments: Tinbergen (1952), Theil (1954),
 ...
- International market imperfections: Arrow, Debreu, ..., Geanakoplos and Polemarchakis (1986), Greenwald and Stiglitz (1986), ..., Farhi and Werning (2016), ...

Example I of Spillovers

Real spillovers

• representative private agent in country *i* with $u(c) = c^{1-\theta}/(1-\theta)$

$$\max U^{i} = u(c_{0}^{i}) + u(c_{1}^{i}) \quad c_{0}^{i} = y_{0}^{i} + m_{0}^{i}$$
$$c_{1}^{i} = y_{1}^{i} + m_{1}^{i}$$
$$m_{0}^{i} + m_{1}^{i}/R \le 0$$

• in vector notation: define $m^i = (m_0^i, m_1^i)^T$, Q = (1, 1/R), etc. $\max_{m^i} V(m^i) = u(y_0^i + m_0^i) + u(y_1^i + m_1^i) \quad \text{st.} \quad Q \cdot m^i \le 0$

Real shock: consider an increase in endowment $dy_0^i > 0$,

$$\left. \frac{dm^{i}}{dy_{0}^{i}} \right|_{R} = \left(\begin{array}{c} -s \\ Rs \end{array} \right) \quad \text{where} \quad s = \frac{1}{1 + R^{\frac{\theta - 1}{\theta}}}$$

Spillovers: smaller t = 0 and greater t = 1 inflows/imports

Anton Korinek (JHU and NBER)

Currency Wars or Efficient Spillovers?

Example I of Spillovers

Real spillovers

• representative private agent in country *i* with $u(c) = c^{1-\theta}/(1-\theta)$

$$\max U^{i} = u(c_{0}^{i}) + u(c_{1}^{i}) \quad c_{0}^{i} = y_{0}^{i} + m_{0}^{i}$$
$$c_{1}^{i} = y_{1}^{i} + m_{1}^{i}$$
$$m_{0}^{i} + m_{1}^{i}/R \leq 0$$

• in vector notation: define $m^i = (m_0^i, m_1^i)^T$, Q = (1, 1/R), etc. $\max_{m^i} V(m^i) = u(y_0^i + m_0^i) + u(y_1^i + m_1^i) \quad \text{st.} \quad Q \cdot m^i \le 0$

Real shock: consider an increase in endowment $dy_0^i > 0$,

$$\left. \frac{dm^{i}}{dy_{0}^{i}} \right|_{R} = \left(\begin{array}{c} -s \\ Rs \end{array} \right) \quad \text{where} \quad s = \frac{1}{1 + R^{\frac{\theta - 1}{\theta}}}$$

Spillovers: smaller t = 0 and greater t = 1 inflows/imports

Anton Korinek (JHU and NBER)

Currency Wars or Efficient Spillovers?

Example I of Spillovers

Real spillovers

• representative private agent in country *i* with $u(c) = c^{1-\theta}/(1-\theta)$

$$\max U^{i} = u(c_{0}^{i}) + u(c_{1}^{i}) \quad c_{0}^{i} = y_{0}^{i} + m_{0}^{i}$$
$$c_{1}^{i} = y_{1}^{i} + m_{1}^{i}$$
$$m_{0}^{i} + m_{1}^{i}/R \le 0$$

• in vector notation: define $m^i = (m_0^i, m_1^i)^T$, Q = (1, 1/R), etc.

$$\max_{m^{i}} V\left(m^{i}\right) = u\left(y_{0}^{i} + m_{0}^{i}\right) + u\left(y_{1}^{i} + m_{1}^{i}\right) \quad \text{st.} \quad Q \cdot m^{i} \leq 0$$

Real shock: consider an increase in endowment $dy_0^i > 0$,

$$\left. \frac{dm^{i}}{dy_{0}^{i}} \right|_{R} = \left(\begin{array}{c} -s \\ Rs \end{array} \right) \qquad \text{where} \qquad s = \frac{1}{1 + R^{\frac{\theta - 1}{\theta}}}$$

Spillovers: smaller t = 0 and greater t = 1 inflows/imports

Anton Korinek (JHU and NBER)

Example II of Spillovers

Anton Korinek (

Spillovers of current account (CA) intervention

- simple rationale for CA intervention: learning-by-exporting
- extend Example I by assuming $y_1^i = y_1^i (-M_0^i)$ with $y_1^{i'} (-M_0^i) > 0$ (upper-case variables represent country-wide aggregates; individual agents do not internalize that $m^i = M^i$ in equilibrium)

Optimal policy: subsidize net exports/capital outflows in period 0

$$au_0^i = y_1^{i\prime} \cdot rac{u'(c_1^i)}{u'(c_0^i)}$$

Spillovers: greater outflows in period 0/inflows in period 1

$$\frac{dm^{i}}{d\tau_{0}^{i}}\Big|_{Q} = \begin{pmatrix} -s \\ Rs \end{pmatrix} \text{ where } s = \frac{y_{0}^{i} + y_{1}^{i}/R}{(2 - \tau_{0}^{i})^{2}}$$
HU and NBER) Currency Wars or Efficient Solidovers? SUBRE/PSE/CEPII 2016

Spillovers of export stimulus policy at the ZLB:

• consider zero lower bound on the nominal interest rate:

$$\iota_1^i \ge 0$$

- period 0 output is demand-determined: $\tilde{Y}_0^i = C_0^i M_0^i$ with the usual (New) Keynesian frictions in the background
- if world interest rate high enough: $(1 + \pi_1^i) R 1 > 0$ \rightarrow no problem
- if world interest rate too low: (1 + πⁱ₁) R − 1 = 0
 → imports Mⁱ₀ eat into domestic aggregate demand

Optimal policy: CA intervention to increase net exports *Spillovers:* greater CA deficit in other countries

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Spillovers of export stimulus policy at the ZLB:

• consider zero lower bound on the nominal interest rate:

$$\iota_1^i \ge 0$$

- period 0 output is demand-determined: $\tilde{Y}_0^i = C_0^i M_0^i$ with the usual (New) Keynesian frictions in the background
- if world interest rate high enough: $(1 + \pi_1^i) R 1 > 0$ \rightarrow no problem
- if world interest rate too low: (1 + πⁱ₁) R − 1 = 0
 → imports Mⁱ₀ eat into domestic aggregate demand

Optimal policy: CA intervention to increase net exports *Spillovers:* greater CA deficit in other countries

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Spillovers of macroprudential policy or capital controls following Jeanne and Korinek (AERPP 2010)

• consider a three period economy with a representative agent

$$U^i = u(c_0^i) + u(c_1^i) + c_2^i$$

each agent owns a tree that trades at date 1 price q

tree generates borrowing capacity

 $m_{2}^{i}+\phi p^{i}\left(M_{1}^{i}
ight) \geq0$

ightarrow price-dependent financial constraint

Optimal policy: imposing macroprudential policy in period 0 *Spillovers:* lower borrowing in period 0, more borrowing (smaller CA reversal) in period 1

э.

Spillovers of macroprudential policy or capital controls following Jeanne and Korinek (AERPP 2010)

• consider a three period economy with a representative agent

$$U^i = u(c_0^i) + u(c_1^i) + c_2^i$$

• each agent owns a tree that trades at date 1 price q

tree generates borrowing capacity

 $m_{2}^{i}+\phi p^{i}\left(M_{1}^{i}
ight) \geq0$

ightarrow price-dependent financial constraint

Optimal policy: imposing macroprudential policy in period 0

Spillovers: lower borrowing in period 0, more borrowing (smaller CA reversal) in period 1

Example IV of Spillovers

Exchange rate stabilization to insure traded/non-traded sector

- consider a developing economy with two types of agents:
 - financial elite: have access to international capital market
 - workers: live hand-to-mouth: no access to capital markets work either in traded or non-traded sector
- all agents value consumption:

$$U^{i} = \sum \beta^{t} u(\boldsymbol{c}_{T,t}^{i}, \boldsymbol{c}_{N,t}^{i})$$

- under autarky and no shocks: income of workers is stable \rightarrow consumption smooth
- under open capital accounts: fluctuations in world interest rate lead to inflows/outflows
 - \rightarrow workers suffer positive/negative income shocks

Optimal policy: smoothing CA (leaning against the wind)

Spillover: reduced opportunities to trade for other countries,

Anton Korinek (JHU and NBER)

Currency Wars or Efficient Spillovers?

Example IV of Spillovers

Exchange rate stabilization to insure traded/non-traded sector

- consider a developing economy with two types of agents:
 - financial elite: have access to international capital market
 - workers: live hand-to-mouth: no access to capital markets work either in traded or non-traded sector
- all agents value consumption:

$$U^{i} = \sum \beta^{t} u(\boldsymbol{c}_{T,t}^{i}, \boldsymbol{c}_{N,t}^{i})$$

- under autarky and no shocks: income of workers is stable \rightarrow consumption smooth
- under open capital accounts: fluctuations in world interest rate lead to inflows/outflows
 - \rightarrow workers suffer positive/negative income shocks

Optimal policy: smoothing CA (leaning against the wind)

Spillover: reduced opportunities to trade for other countries,

Anton Korinek (JHU and NBER)

Currency Wars or Efficient Spillovers?

- set of countries \mathcal{I} of total measure $\omega(\mathcal{I}) = 1$
- utility of representative domestic agent in each country $i \in \mathcal{I}$

$$\begin{array}{ll} U^{i}(x^{i}) & \text{s.t.} & f^{i}(x^{i},X^{i},m^{i},M^{i}) \leq 0 \\ & \\ \frac{Q}{1-\tau^{i}} \cdot m^{i} \leq T^{i} \end{array}$$

- x^i, X^i ... bundle of domestic variables
- *mⁱ*, *Mⁱ* ... bundle of international transactions (upper-case variables denote country aggregates)
- Q ... vector of world market prices of mⁱ, Mⁱ
- τ^i ... full set of tax instruments on intl transactions rebated via T^i

Example: Canonical open economy macro models:

$$\max_{(c_t^i, b_{t+1}^i)_i} \sum_t \beta^t u(c_t^i) \quad \text{s.t.} \quad c_t^i + (1 - \xi_t^i) b_{t+1}^j / R_{t+1} = y_t^i + b_t^i$$

Mapping:

- define net imports $m_t^i = c_t^i y_t^i = b_t^i b_{t+1}^j / R_{t+1}$
- domestic variables $x^i = \{c_t^i\}$
 - world market prices $Q_t = 1/\prod_{s=0}^t R_{s+1}$
 - external policy instruments $(1 \tau_t^i) = 1/\prod_{s=1}^t (1 \xi_{s+1}^i)$

$$\begin{array}{l} \rightarrow \quad \text{utility } U^{i}(x^{i}) = \sum_{t} \beta^{t} u(c^{i}_{t}) \\ \rightarrow \quad \text{constraints } f^{i}_{t}(\cdot) = c^{i}_{t} - y^{i}_{t} - m^{i}_{t} \leq 0 \ \forall t \end{array}$$

・ロト ・ 同ト ・ ヨト ・ ヨ

Further Examples:

- multiple traded goods and states: $m^i = (m^i_{t,k,s})$ with k = 1...K, $s \in S$
- non-traded goods: $x^i = (c^i_{T,t}, c^i_{N,t}, y^i_{N,t})$ and $f^i_{t,2} = y^i_{N,t} c^i_{N,t}$
 - labor: $x^i = (c^i_t, \ell^i_t)$ and $U^i(x^i) = \sum_t \left[u(c^i_t) d(\ell^i_t) \right]$
 - capital: $x^i = (c_t^i, k_t^i)$ and f_t^i includes law of motion
 - domestic market imperfections \rightarrow capture in $f^i(\cdot)$
 - domestic policy measures \rightarrow capture in X^i with constraint $x^i = X^i$
 - multiple types of agents, political preferences \rightarrow capture in $U^i(x^i)$
- \rightarrow framework nests a wide range of open economy macro models

Impose three conditions sufficient to obtain efficient benchmark:

- policymakers do not have (do not exert) market power
- Policymakers have complete set of external instruments
- international market is complete

12 N 4 12

Separability

Given the complete external policy instruments, we can separate the domestic and international optimization problems.

Step 1: optimal domestic allocation for given external (m^i, M^i)

- representative agent optimizes
- domestic policymaker optimizes
- \rightarrow defines reduced-form utility function $V^i(m^i, M^i)$

Example: $V^i(m^i, M^i) = \sum_t \beta^t u(y_t^i + m_t^i)$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Solution Step 1 – Details

Step 1: formal problems for given external (m^i, M^i)

• representative agent: takes X^i as given:

$$v^{i}(m^{i}, M^{i}, X^{i}) = \max_{x^{i}} U^{i}(x^{i}) \quad \text{s.t.} \quad f^{i}(m^{i}, M^{i}, x^{i}, X^{i}) \leq 0$$

 $\rightarrow FOC(x^{i}): \quad U^{i}_{x} = \lambda^{i} f^{i}_{x} \quad \rightarrow \quad \text{obtain } (IC)$

• domestic planner (for consistent external allocations $m^i = M^i$):

$$\max_{X^{i}} U^{i}(x^{i}) \quad \text{s.t.} \quad (IC), \ x^{i} = X^{i}, \ f^{i}(M^{i}, M^{i}, X^{i}, X^{i}) \leq 0$$

$$\rightarrow \qquad \text{obtain optimal domestic } X^{i}(M^{i})$$

 define reduced-form utility by combining agent's value function and planner's optimal policies:

$$V^{i}(m^{i}, M^{i}) = v^{i}(m^{i}, M^{i}, X^{i}(M^{i}))$$

Step 2: determine optimal external allocations Mⁱ in country i:

• planner solves for optimal external allocation *Mⁱ*,

$$\max_{M^{i}} V^{i}(M^{i}, M^{i}) \quad \text{s.t.} \quad Q \cdot M^{i} \leq 0$$

while internalizing any externalities from flows

 $\rightarrow\,$ determines global competitive equilibrium

Solution Step 2 – Details

Step 2: optimal external allocations Mⁱ:

representative agent:

$$\max_{m^{i}} V^{i}(m^{i}, M^{i}) \quad \text{s.t.} \quad \frac{Q}{1 - \tau^{i}} \cdot m^{i} \leq T^{i}$$
$$\rightarrow FOC(m^{i}) : (1 - \tau^{i}) V_{m}^{i} = \lambda_{e}^{i} Q$$

• planner in country *i* that acts competitively:

$$\max_{M^{i}} V^{i}(M^{i}, M^{i}) \quad \text{s.t.} \quad Q \cdot M^{i} \leq 0$$
$$\rightarrow FOC(M^{i}) : V_{m}^{i} + V_{M}^{i} = \Lambda_{e}^{i}Q$$

Lemma (Implementation)

The planner's optimal allocation can be implemented by setting

$$\tau^i = -\frac{V_M^i}{V_m^i}$$

Anton Korinek (JHU and NBER)

Global Competitive Equilibrium: feasible allocations (X^i, M^i) , external policies (τ^i) and international prices Q such that:

• $x^i = X^i$ and $m^i = M^i$ is optimal for private agents in each country *i*

- each national planner chooses optimal X^i, τ^i taking Q as given
- global markets for *M* clear: $\int_{i \in \mathcal{I}} M^i d\omega(i) = 0$

Key Question

Is the Nash equilibrium among national planners efficient?

Global Planning Problem:

global planner maximizes:

$$\max_{\{M^{i}\}}\int_{i\in\mathcal{I}}\left[\phi^{i}V^{i}(M^{i},M^{i})+\nu M^{i}\right]d\omega\left(i\right)$$

• optimality condition:

$$\phi^{i}\left[V_{m}^{i}+V_{M}^{i}\right]=\nu\quad\forall i$$

- if we pick Q = ν and Λⁱ_e = 1/φⁱ, then the optimality conditions of all national planners Vⁱ_m + Vⁱ_M = Λⁱ_eQ are satisfied
- ightarrow Nash equilibrium among national planner is Pareto efficient

SUERF/PSE/CEPII 2016 22 / 40

1st FWT for National Economic Policymaking

The Nash equilibrium among national planners is Pareto efficient.

Note:

- policy interventions (X^i, τ^i) entail spillover effects
- BUT: spillover effects are mediated through global prices Q
- $\rightarrow\,$ first welfare theorem applies at the level of planners
- $\rightarrow\,$ global reallocation of capital/goods is efficient market response
- Result = extension of standard 1st FWT with two modifications:
 - two layers of optimizing agents: private agents and policymakers
 - anything goes in the domestic economy

Scope of Results and Robustness

Efficiency result applies to all our earlier examples

Robustness: result holds under all discussed extensions:

- labor, capital, multiple goods, uncertainty, ...
- any domestic market imperfections
- heterogeneous agents, political preferences, ...
- \rightarrow all these affect optimal *level* but *not efficiency* of intervention

Sufficient Conditions for Efficiency:

- domestic planners are competitive (price-takers)
- Planners have sufficient external instruments to set Mⁱ
- Ino international market imperfections

э.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pareto Improvements

When can we obtain Pareto improvements (rather than just Pareto efficiency)?

 \rightarrow generally requires global coordination

Two possible avenues:

- either lump-sum transfers \hat{T}^i
- 2 or coordinated use of policy instruments (τ^i) to keep Q constant

Example:

- N identical countries except different sizes ωⁱ
- assume exogenous increase in externalities calling for $d\tau^i > 0$
- world prices remain constant if countries set

$$egin{aligned} &d ilde{ au}^i = (1-\omega^i) d au^i \ &d ilde{ au}^j = \omega^i d au^i \end{aligned}$$

 \rightarrow optimal mix of inflow/outflow restrictions

Unilateral Intervention

Unilateral Intervention

Pareto-Improving Coordinated Intervention

Coordinated Intervention to Hold World Prices Constant

Anton Korinek (JHU and NBER)

Arms Race of Intervention:

- assume externalities V_M^i are increasing in flow of imports M^i
- shock in one country's may lead to greater intervention au^i
- this diverts flows to other countries
- other countries experience larger externalities, also increase intervention
- this may in turn prompt initial country to raise τ^i further, etc.
- ightarrow this may be the efficient process of equilibrium adjustment (tatonnement)
- \rightarrow "arms race" not necessarily a sign of inefficiency

Case I for Cooperation: Monopolistic Policymakers

Monopolistic policymakers: internalize market power over Q

- global market clearing requires $\omega^i M^i + M^{-i}(Q) = 0$
- monopolistic planner internalizes ROW inv. demand $Q^{-i}(-\omega^i M^i)$

$$\max_{M^{i}} V^{i}(M^{i}, M^{i}) \quad \text{s.t.} \quad Q^{-i}(-\omega^{i}M^{i}) \cdot M^{i} \leq 0$$

optimality condition

$$V_m^i + V_M^i = \Lambda^i Q^T \left[I - \mathcal{E}_{Q,M}^i \right]$$
 where $\mathcal{E}_{Q,M}^i = \omega^i Q_M^{-i} M^i / Q^T$
"optimal" monopolistic intervention: $1 - \hat{\tau}^i = \frac{1 + V_M^i / V_m^i}{1 - \mathcal{E}_{Q,M}^i}$

Proposition: Monopolistic Policy Intervention

Monopolistic policy interventions designed to distort world prices/interest rates are inefficient.

Anton Korinek (JHU and NBER)

Currency Wars or Efficient Spillovers?

SUERF/PSE/CEPII 2016 29 / 40

Identifying Monopolistic Policy Intervention

Difficulty: How do we distinguish monopolistic behavior from correcting externalities?

Theory offers a few guidelines:

- small economies in the world market have Qⁱ_M = 0 → no market power over Q
- countries with little cross-country trade have Mⁱ ≈ 0
 → no welfare benefit to manipulating price so Eⁱ_{Q,M} ≈ 0
- sign of intervention $\hat{\tau}^i$ = sign of trade position $M_{t,k,s}^i$:
 - country with net inflows will restrict inflows and vice versa
 - with multiple goods, tax imports and restrict exports
 - under uncertainty, reduce insurance because each country has net long position in idiosyncratic risk

- If external policy instruments τⁱ complete, a planner will never distort domestic policies Xⁱ to exert market power
- If external policy instruments imperfect, then domestic policies will also be distorted to exert market power

Example: Market Power and Domestic Policies

Optimal 'monopolistic' allocation when $\tau^i \equiv 0$:

- assume no external policy instruments available at all ($\tau^i \equiv 0$)
- \rightarrow second-best: internalize indirect effect of domestic policy on (m^i, M^i)
 - odmestic planner:

$$\begin{array}{ll} \max_{X^{i}} U^{i}(X^{i}) \quad \text{s.t.} \quad (IC), \ x^{i} = X^{i}, \ f^{i}(M^{i}, M^{i}, X^{i}, X^{i}) \leq 0 \\ Q^{-i}(-M^{i}) \cdot M^{i} \leq 0 \\ \rightarrow & \text{obtain optimal } \tilde{X}^{i}(M^{i}) \end{array}$$

 define reduced-form utility by combining agent's value function and planner's optimal policies:

$$ilde{V}^{i}(m^{i},M^{i})=v^{i}(m^{i},M^{i}, ilde{X}^{i}(M^{i}))$$

4 D b 4 A b

Baseline model:

- complete set of external instruments (τ^i)
- allowed planner to implement desired external allocation (critical for argument of the first welfare theorem)

Imperfect Policy Instruments:

- can be captured by a convex cost function $C^i(\tau^i) \ge 0$
- interpretations:
 - costly instruments, e.g. $C^{i}(\tau^{i}) = \gamma^{i} \sum (\tau^{i}_{t})^{2}/2$
 - missing instruments if $\gamma^i \to \infty$
 - coarse instruments, e.g. $C^{i}(\tau^{i}) = \gamma^{i} \sum (\tau^{i}_{t,s} \tau^{i}_{t,0})^{2}/2$ with $\gamma^{i} \to \infty$
- note: even imperfect set of instruments can be *effectively* perfect, e.g. if there are no externalities $V_M^i = 0$

3

Proposition: Imperfect External Policy Instruments

- The equilibrium among national planners is generically inefficient if at least one country has effectively imperfect instruments.
- Constrained efficiency under imperfect policy instruments requires

$$\sum \omega^i \boldsymbol{C}^{i'}(\tau^i)(1-\tau^i) = \boldsymbol{0}$$

Intuition:

- setting average marginal distortion to zero minimizes total implementation costs
- if this is violated then there is generally scope for regulation

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example of Wasteful Competitive Intervention:

- consider N identical countries with externalities $V_M^i < 0$
- each country intervenes τⁱ > 0 at cost Cⁱ(τⁱ) > 0
 - intervention is completely wasteful: same allocation but lower cost with τⁱ = 0 ∀i

Example of Sharing the Regulatory Burden:

- consider 2 countries i = A, B with cost $C^{i}(\tau^{i}) = \gamma^{i} \sum (\tau_{t}^{i})^{2}/2$
- exogenous change in externalities calls for $d\tau^A = d\eta$
- in national planning equilibrium, unilateral intervention
- under global coordination,

$$d\tilde{\tau}^{A} = rac{\gamma^{B}}{\gamma^{A} + \gamma^{B}} \cdot d\eta$$
 and $d\tilde{\tau}^{B} = -rac{\gamma^{A}}{\gamma^{A} + \gamma^{B}} \cdot d\eta$

• extreme cases: $\gamma^{B} = 0$ or $\gamma^{A} \to \infty$

Further Results on Imperfect Policy Instruments

- If set of *external* policy instruments effectively imperfect, it is optimal to distort *domestic* policies to target external transactions
- ightarrow global coordination needs to also involve domestic policies

Case III: Imperfections in International Markets

Examples:

- Limited risk markets
- Financial constraints
- Price rigidities and AD externalities
- Cross-border externalities

Formal description:

 $\Phi\left(\left(M^{i}
ight)_{i=1}^{N},Q
ight)\leq0$

SUERF/PSE/CEPII 2016 38 / 40

Case III: Imperfections in International Markets

Examples:

- Limited risk markets
- Financial constraints
- Price rigidities and AD externalities
- Cross-border externalities

Formal description:

$$\Phi\left(\left(\boldsymbol{M}^{i}\right)_{i=1}^{N},\boldsymbol{Q}\right)\leq0$$

Lemma: Use of External Instruments under Imperfect Markets

Cooperation under imperfect intl markets is limited to external policy instruments, provided that the set of such instruments is complete.

Intuition:

Separability results continue to hold

- Fixing international imperfection only requires external instruments
- Otherwise: generally need to coordinate on domestic instruments as well

イロト イ団ト イヨト イヨト

Intl. policy cooperation indispensable in three problem areas:

- ensuring competitive behavior
- 2 dealing with imperfect external policy instruments
- addressing imperfections in international markets
- \rightarrow Any remaining spillover effects are efficient